Mensuration

EXERCISE 19A

For SSC GD \& MTS Exams

1. The total surface area of a hemisphere is very nearly equal to that of an equilateral triangle. The side of the triangle is how many times (approximately) of the radius of the hemisphere?

SSC MTS 02/11/2021 (Shift-3)
(a) $\left(\frac{8 \pi}{\sqrt{3}}\right)^{0.5}$
(b) $\left(\frac{4 \pi}{3}\right)^{0.5}$
(c) $(2 \pi \sqrt{3})^{0.5}$
(d) $(4 \pi \sqrt{3})^{0.5}$
2. The area of trapezium, whose parallel sides are 25 cm and 19 cm long, is $330 \mathrm{~cm}^{2}$. The distance between the sides (in cm) is :

SSC MTS 02/11/2021 (Shift-2)
(a) 10
(b) 12
(c) 50
(d) 15
3. A rectangle of dimension 10 cm and 5 cm is placed adjacent to another rectangle of the same size to draw an L shape figure. Find the perimeter of the shape so formed.

SSC MTS 02/11/2021 (Shift-1)
(a) 100
(b) 40
(c) 50
(d) 60
4. A bucket in the shape of the frustum of a cone has its top and bottom radii as 20 cm and 10 cm , respectively. The depth of the bucket is 24 cm . The capacity of the bucket is : $\pi=22 / 7$)

SSC MTS 02/11/2021 (Shift-1)
(a) $8800 \mathrm{~cm}^{3}$
(b) $13200 \mathrm{~cm}^{3}$
(c) $17000 \mathrm{~cm}^{3}$
(d) $17600 \mathrm{~cm}^{3}$
5. A room has length of 15 feet width 12 feet and height 10 feet. It has one door of dimension 8 feet and 3.5 feet, and 2 windows of size 5 feet $\times 3$ feet. Find the cost of painting the four walls and the ceiling at $₹ 50$ per ft^{2}.

SSC MTS 02/11/2021 (Shift-1)
(a) ₹ 19600
(b) ₹ 21,200
(c) ₹ 24,100
(d) ₹ 33,100
6. The perimeter and area of the rectangular sheet are 94 m and $420 \mathrm{~m}^{2}$ respectively. The length of the diagonal will be :

SSC MTS 27/10/2021 (Shift-3)
(a) 32 m
(b) 36 m
(c) 35 m
(d) 37 m
7. The area of the triangular park with sides $78 \mathrm{~m}, 160 \mathrm{~m}$ and 178 m is equal to the area of the rectangular garden whose sides are in the ration of 13:12. The smaller side (in m) of the garden is :

SSC MTS 27/10/2021 (Shift-2)
(a) $26 \sqrt{5}$
(b) $24 \sqrt{10}$
(c) $12 \sqrt{10}$
(d) $13 \sqrt{5}$
8. A solid metallic toy has a hemispherical base with radius 3.5 cm surmounted by a cone. If the height of the cone is same as the radius if its base, then the volume of metal used in SSC MTS 27/10/2021 (Shift-1)
(a) $89 \frac{2}{3}$
(b) $144 \frac{3}{4}$
(c) $134 \frac{3}{4}$
(d) $179 \frac{2}{3}$
9. The radius of a circular park is 23 m . It has inside all around it a 4 m wide path. Find the cost of paving the path at the rate of ₹ $500 / \mathrm{m}^{2}$.

SSC MTS 27/10/2021 (Shift-1)
(a) $₹ 2,10,000$
(b) ₹ $2,64,000$
(c) ₹ $2,60,000$
(d) ₹ $2,40,000$
10. A circular wire of diameter 56 cm is folded in the shape of a rectangle whose sides are in the ratio 7:4. The area enclosed by the rectangle is :

SSC MTS 26/10/2021 (Shift-3)
(a) 1842
(b) 1792
(c) 1684
(d) 1782
11. The curved surface area of the cone is $\frac{3432}{7} \mathrm{~cm}^{2}$ and its radius is 12 cm . What is the radius of a sphere whose volume is 1.2 times the volume of the cone? ($\pi=22 / 7$)

SSC MTS 26/10/2021 (Shift-3)
(a) 8 cm
(b) 6 cm
(c) 5 cm
(d) 4 cm
12. The ratio of the curved surface area and total surface area of a cylinder is $4: 7$. If its volume is $4851 \mathrm{~cm}^{3}$, then its radius is : $(\pi=22 / 7)$

SSC MTS 26/10/2021 (Shift-3)

- SSC Maths
(a) 10
(b) 7
(c) 9.5
(d) 10.5

13. If the side of a square is increased by 40%, then its area will be increased by :

SSC MTS 26/10/2021 (Shift-3)

(a) 90%
(b) 96%
(c) 92%
(d) 86%
14. The radius of a solid lead sphere is 2 cm .2541 such spheres are melted and recast into a cube of edge xcm . The volume x is $(\pi=22 / 7)$

SSC MTS 26/10/2021 (Shift-2)
(a) 44
(b) 22
(c) 66
(d) 33
15. An open tank is 25 m long, 12 m wide and 6 m deep. The cost (in ₹) of plastering its walls and bottom from the inside at ₹ 15 per m^{2} is :

SSC MTS 26/10/2021 (Shift-1)
(a) 11,160
(b) 12,500
(c) 13,275
(d) 10,800
16. The curved surface area of a right circular cone is 65 $\pi \mathrm{cm}^{2}$ and the radius of its base is 5 cm . What is 40% of the volume of the cone, in cm^{3} ?

SSC MTS 22/10/2021 (Shift-3)
(a) 50π
(b) 40π
(c) 180π
(d) 100π
17. A hall is 18 m long and 12 m broad. If the area of the floor is equal to the sum of the area of the four walls, the volume (in m^{3}) of the hall is :

SSC MTS 22/10/2021 (Shift-3)
(a) 876.2
(b) 777.6
(c) 576.4
(d) 675.5
18. A field in the form of circle. The area of the field is $3850 \mathrm{~m}^{2}$, and if the cost of fencing around it is ₹ 11 per metre, then the cost in (in $₹$) is : (use $\pi=22 / 7$)

SSC MTS 22/10/2021 (Shift-3)
(a) 2,200
(b) 2,400
(c) 2,840
(d) 3,000
19. The area of the floor of a cubical room is $147 \mathrm{~m}^{2}$. The length of the longest rod that can be kept in the room is :

SSC MTS 22/10/2021 (Shift-2)
(a) 15 m
(b) 18 m
(c) 21 m
(d) 16 m
20. The diameter of an iron ball used for the shot put is 21 cm . It is melted and then a cylinder of height 3.5 cm is made. The curved surface are of the cylinder will be

SSC MTS 22/10/2021 (Shift-2)
(a) 462
(b) 464
(c) 362
(d) 460

SOLUTIONS

1. (d) According to the question

Area of the equilateral triangle
$=$ Total surface area of the hemisphere

$$
\begin{aligned}
\frac{\sqrt{3}}{4} \times \text { side }^{2} & =3 \pi r^{2} \\
\frac{\text { side }}{r} & =(\sqrt{3} \times 4 \times \pi)^{0.5} \\
& =(4 \pi \sqrt{3})^{0.5}
\end{aligned}
$$

2. (d) Let the distance between sides be x.

$$
\begin{array}{rlrl}
& \text { ATQ, }\left(\frac{25+19}{2}\right) \times x & =330 \\
\Rightarrow & \frac{44}{2} \times x & =330 \\
& \therefore & x & =\frac{330 \times 2}{44}=15 \mathrm{~cm}
\end{array}
$$

3. (c) According to the question

Perimeter of L shape figure

$$
\begin{aligned}
& =\text { Sum of all sides } \\
& =2 \times 25 \\
& =50 \mathrm{~cm}
\end{aligned}
$$

4. (d) Given,

Depth of bucket $(h)=24 \mathrm{~cm}$
radii of top $r_{1}=20 \mathrm{~cm}$
radii of bottom $r_{2}=10 \mathrm{~cm}$
\therefore Volume of bucket $=\frac{\pi}{3}\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right) h$

$$
\begin{aligned}
& =\frac{22}{7 \times 3}[400+100+200] \times 24 \\
& =22 \times 100 \times 8 \\
& =17,600 \mathrm{~cm}^{3}
\end{aligned}
$$

5. (d) Given length $=15$ feet,

$$
\text { width }=12 \text { feet, }
$$

$$
\text { height }=10 \text { feet }
$$

and Dimension of one door

$$
=8 \mathrm{ft} \times 3.5 \mathrm{ft}
$$

Dimension of two windows

$$
=5 \times 3
$$

Area of the painted wall

$$
\begin{aligned}
& =2 \times(15+12) \times 10+15 \times \\
& \quad 12-8 \times 3.5-2 \times 5 \times 3 \\
& =540+180-28-30 \\
& =662 \mathrm{ft}^{2}
\end{aligned}
$$

Total cost of painting four walls

$$
\begin{aligned}
& =662 \times 50 \\
& =₹ 33,100
\end{aligned}
$$

6. (c) Trick :

$$
\text { Length }=35 \mathrm{~cm}
$$

7. (b) According to the question,

Area of rectangular $=$ Area of triangle

$$
\begin{aligned}
13 x \times 12 x & =\frac{1}{2} \times 78 \times 160 \\
x^{2} & =40 \\
& =2 \sqrt{10}
\end{aligned}
$$

Smallest side of rectangular Garden

$$
\begin{aligned}
& =12 \times 2 \sqrt{10} \\
& =24 \sqrt{10} \mathrm{~cm}
\end{aligned}
$$

8. (c) According to the question,

Volume of metal used = volume of cone + volume of hemisphere

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2} \mathrm{~h}+\frac{2}{3} \pi r^{3} \\
& =\frac{1}{3} \pi r^{3}+\frac{2}{3} \pi r^{3} \\
\Rightarrow \quad \pi r^{3} & =\frac{22}{7} \times 3.5 \times 3.5 \times 3.5 \\
& =134 \frac{3}{4}
\end{aligned}
$$

9. (b) According to the question

Area of the path $=\pi\left(R^{2}-r^{2}\right)$

$$
=\frac{22}{7}\left(23^{2}-19^{2}\right)
$$

\therefore Cost of path $=500 \times \frac{22}{7} \times 42 \times 4$

$$
=₹ 264000
$$

10 (b) Given, Diameter of wire $=56 \mathrm{~cm}$ ratio of triangle(length \& breadth) $=7: 4$ Let length of rectangle $=7 a$
and breadth of rectangle $=4 a$
According to question
Perimeter $=$ circumference of circle
$2(7 a+4 a)=2 \pi r$
$11 a=\frac{22}{7} \times 28$
$a=8$
Area of rectangle $=7 \times 8 \times 4 \times 8$

$$
=1792 \mathrm{~cm}^{2}
$$

11. (b) Curved surface area $\pi r l=\frac{3432}{7}$

$$
\begin{aligned}
\frac{22}{7} \times 12 \times 1 & =\frac{3432}{7} \\
l & =13
\end{aligned}
$$

By Pythagoras triplets 5, 12, 13

$$
h=5 \mathrm{~cm}
$$

\therefore Volume of sphere $=1.2 \times$ Volume of cone

$$
\begin{aligned}
\frac{4}{3} \pi r^{3} & =1.2 \times \frac{1}{3} \times \pi \times 12 \times 5 \\
r^{3} & =216 \\
r & =6 \mathrm{~cm}
\end{aligned}
$$

12. (d) According to question

$$
\begin{aligned}
& \quad \frac{2 \pi r h}{2 \pi r(r+h)}=\frac{4}{7} \\
& \Rightarrow \quad 7 h=4 r+4 h \\
& \Rightarrow \quad h=\frac{4}{3} r \\
& \text { Volume of cylinder }=\pi r^{2} h \\
& \Rightarrow \quad \frac{22}{7} \times r^{2} \times \frac{4}{3} \times r=4851 \\
& \Rightarrow r^{3}=\frac{441 \times 21}{8} \\
& \Rightarrow r=\frac{21}{2}=10.5 \mathrm{~cm}
\end{aligned}
$$

13. (b) Trick

$$
\begin{array}{r}
\frac{40}{100}=\frac{2}{5}>+ \\
5 \\
\hline 5
\end{array}
$$

Increase $\%=\frac{24}{25} \times 100=96 \%$
14. (a) Radius of solid lead sphere $=2 \mathrm{~cm}$

Number of sphere $=2541$
Number of cube of edge $=x$
Volume of sphere $=$ Volume of cube

$$
\begin{aligned}
& 2541 \times \frac{4}{3} \times \frac{22}{7} \times 2^{3}=x^{3} \\
& x=\sqrt{11^{3} \times 4^{3}} \\
& =11 \times 4=44 \mathrm{~cm}
\end{aligned}
$$

15. (a) Area of open tank $=2(l+b) \times h+l \times b$

$$
\begin{aligned}
& =2(25+12) \times 6+25 \times 12 \\
& =444+300=744 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Total cost of plaster per $m^{2}=744 \times 15=₹ 11160$
16. (b) $\quad \mathrm{CSA}$ of cone $=\pi r l=65 \pi$

$$
\begin{aligned}
5 \times l & =65 \\
l & =13
\end{aligned}
$$

By Pythagoras triplets 5, 12, 13

$$
h=12
$$

40% of volume $=\frac{1}{3} \times \pi \times 25 \times 12 \times \frac{40}{100}=40 \pi$
17. (b)According to question

$$
\begin{aligned}
l \times b & =2(l+b) \times h \\
18 \times 12 & =2 \times 30 \times h \\
h & =\frac{18 \times 12}{2 \times 30}=\frac{18}{5}
\end{aligned}
$$

\therefore Volume of hall $=l b h=18 \times 12 \times \frac{18}{5}=777.6 \mathrm{~m}^{3}$
18. (b) Area of circular field $=\pi r^{2}=3850$

$$
\begin{aligned}
r^{2} & =\frac{3850 \times 7}{22}=35 \times 35 \\
r & =35 \mathrm{~m}
\end{aligned}
$$

Circumference of circular field $=2 \pi r=2 \times \frac{22}{7} \times 35$

$$
=220 \mathrm{~m}
$$

Total $\operatorname{cost}($ fencing $)=11 \times 220=₹ 2420$
19. (c) Let side of cubical room $=a$

$$
\begin{aligned}
\text { Area } & =a^{2}=147 \\
\Rightarrow \quad a & =\sqrt{147}=7 \sqrt{3} \mathrm{~m} \\
\text { Diagonal of room } & =\sqrt{3} a=\sqrt{3} \times 7 \sqrt{3} \\
& =21 \mathrm{~m}
\end{aligned}
$$

20. (a) Radius of ball $=\frac{21}{2} \mathrm{~cm}$
height of cylinder $=3.5$
Volume of ball = volume of cylinder
$\frac{4}{3} \pi \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2}=\pi r^{2} \times 3.5$

$$
R=21 \mathrm{~cm}
$$

$$
\text { CSA of cylinder }=2 \pi r h
$$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 21 \times 3.5 \\
& =462 \mathrm{~cm}^{2}
\end{aligned}
$$

EXERCISE 19B

For SSC CHSL Exam

1. ABCD is a square of side 21 cm . A circle is inscribed in the square, Which touches the sides of the square at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S as shown in the below figure. What is the area(in cm^{2}) of the non-shaded region? [figure is not drawn to scale and take $\pi=\frac{22}{7}$]

SSC CHSL 07/06/2022 (Shift-2)
(a) 88.4
(b) 84.6
(c) 90.7
(d) 94.5
2. Calculate the area(in cm^{2}) of the shaded region in the following diagram. SSC CHSL 07/06/2022 (Shift-2)

(a) 45
(b) 42
(c) 48
(d) 50
3. Each edge of the following square is 20 cm long, and a circle is inscribed in the square as shown. What is
the area of the shaded region $\left(\right.$ in cm^{2})? [use $\pi=3.14$] 20 cm

SSC CHSL 08/06/2022 (Shift-2)
(a) 88
(b) 85
(c) 86
(d) 84
4. What is the area of an equilateral triangle whose each sides is 12 cm ?

SSC CHSL 08/06/2022 (Shift-2)
(a) $36 \sqrt{3} \mathrm{~cm}^{2}$
(b) $38 \sqrt{3} \mathrm{~cm}^{2}$
(c) $34 \sqrt{3} \mathrm{~cm}^{2}$
(d) $40 \sqrt{3} \mathrm{~cm}^{2}$
5. The diameter of a semicircle is 5.6 m . What is its perimeter (in m , correct to one decimal place)? Take ($\pi=\frac{22}{7}$)

SSC CHSL 15/04/2021 (Shift-2)
(a) 11.2
(b) 8.8
(c) 14.4
(d) 17.6
6. The sum of the radius of two circles is 286 cm and the area between the concentric circle is 50336 cm 2 . What are the radius $($ in cm$)$ of the two circle? Take $\left(\pi=\frac{22}{7}\right)$

SSC CHSL 15/04/2021 (Shift-2)
(a) 115 and 91
(b) 115 and 171
(c) 91 and 84
(d) 171 and 84
7. The perimeter of an isosceles triangle is 3.6 m and its base is 30 cm shorter than each of the equal side. What is area (in m^{2}) of the triangle?

SSC CHSL 15/04/2021 (Shift-2)
(a) 0.6
(b) 0.72
(c) 0.54
(d) 0.8
8. Ther diameter of the base of a right - circular cylinder is 12 cm and the height of the cylinder is 2.45 times the radius of its base. Find the curved surface area of the cylinder.[use $\pi=22 / 7$]

SSC CHSL 10/06/2022 (Shift-3)
(a) 552.4
(b) 556.4
(c) 544.4
(d) 554.4
9. What is the area $\left(\right.$ in $\left.\mathrm{cm}^{2}\right)$ of an equilateral triangle of side 20 cm ?

SSC CHSL 10/06/2022 (Shift-3)
(a) $100 \sqrt{3}$
(b) 200
(c) 100
(d) $100 \sqrt{2}$
10. What is the height of a solid rightcircular cylinder whose radius is 3 cm and total surface area is $60 \pi \mathrm{~cm}^{2}$?

SSCCHSL 10/06/2022 (Shift-3)
(a) 3 cm
(b) 5 cm
(c) 7 cm
(d) 9 cm
11. How many spherical balls of radius 5 cm can be made by melting a spherical clay ball having a radius of 15 cm ?

SSC CHSL 10/06/2022 (Shift-3)
(a) 18
(b) 3
(c) 9
(d) 27
12. Whatis the surface area of a sphere whose diameter is 30 cm ? [Use $\pi=3.14$]

SSC CHSL 10/06/2022 (Shift-2)
(a) 1134
(b) 2826
(c) 1413
(d) 1130
13. The base of a parallelogram is twice as long as its corresponding height. If the area of the a parallelogram is $144 \mathrm{~cm}^{2}$, find the mentioned height.

SSC CHSL 10/06/2022 (Shift-2)
(a) $2 \sqrt{2}$
(b) $6 \sqrt{2}$
(c) $3 \sqrt{2}$
(d) $8 \sqrt{2}$
14. The area of the quadrilateral is $336 \mathrm{~m}^{2}$ and the perpendicular drawn to one diagonal from the opposite vertices are 16 m and 12 m long. Find the length of this diagonal.

SSC CHSL 10/06/2022 (Shift-1)
(a) 28 cm
(b) 26 cm
(c) 21 cm
(d) 24 cm
15. If the length, breadth and height of a cuboid are 7.5 $\mathrm{m}, 22 \mathrm{~m}$ and 13 m . respectively, then find the volume of the cuboid.

SSC CHSL 10/06/2022 (Shift-1)
(a) 2145
(b) 1245
(c) 4215
(d) 2154
16. The perimeter of a rectangle is 86 cm . The numbers of its area and breadth are in the ratio of 9:1 respectively. The breadth of the rectangle is:

SSC CHSL 1/08/2021 (Shift-3)
(a) 32 cm
(b) 34 cm
(c) 36 cm
(d) 30 cm
17. If the radius of a circle is equal to a diagonal of a square whose area is $12 \mathrm{~cm}^{2}$, then the area of the circle is:

SSC CHSL 11/08/2021 (Shift-2)
(a) 28π
(b) 32π
(c) 24π
(d) 36π
18. How many bricks each measuring $64 \mathrm{~cm} \times 11.25 \mathrm{~cm}$ $\times 6 \mathrm{~cm}$, will be needed to build a wall measuring 8 m $\times 3 \mathrm{~m} \times 22.5 \mathrm{~m}$? SSC CHSL 11/08/2021 (Shift-1)
(a) 200000
(b) 250000
(c) 67500
(d) 125000
19. The total surface area of a solid cube is $4.86 \mathrm{~m}^{2}$. It is melted and recast into a right circular cylinder of radius 0.3 m . What is the height of the cylinder(in m$)$? (correct to one decimal place)Take $\pi=22 / 7$

SSC CHSL 09/08/2021 (Shift-3)
(a) 1.8
(b) 2.6
(c) 2.8
(d) 3.5
20. A solid cube having volume $46656 \mathrm{~cm}^{2}$ is cut into 27 cubes of equal volume. The surface area (in cm^{2}) of the smaller cube is :

SSC CHSL 09/08/2021 (Shift-1)
(a) 864
(b) 756
(c) 936
(d) 921
21. If the adjacent sides of a rectangle whose perimeter is 60 cm are in the ratio of $3: 2$, then what will be the area of the rectangle?

SSC CHSL 06/08/2021 (Shift-3)
(a) $300 \mathrm{~cm}^{2}$
(b) $216 \mathrm{~cm}^{2}$
(c) $60 \mathrm{~cm}^{2}$
(d) $864 \mathrm{~cm}^{2}$
22. In a rectangular park having dimension $60 \mathrm{~m} \times 40 \mathrm{~m}$, two circular flower beds with radius 7 m are developed. What is the area of the remaining portion of the park (in m^{2})

SSC CHSL 06/08/2021 (Shift-1)
(a) 1196
(b) 1749
(c) 2092
(d) 2246
23. If one side of te triangle is 7 with its perimeter equal to 18 , and area equal to $\sqrt{108}$, then other two sides are:

SSC CHSL 18/03/2020 (Shift-1)
(a) 6 and 5
(b) 3.5 and 7.5
(c) 7 and 4
(d) 3 and 8
24. If the height of an equilateral triangle is 12 cm , then what is the area of the triangle?

SSC CHSL 17/03/2020 (Shift-3)
(a) $89.567 \mathrm{~cm}^{2}$
(b) $96.897 \mathrm{~cm}^{2}$
(c) $67.9843 \mathrm{~cm}^{2}$
(d) $83.1384 \mathrm{~cm}^{2}$
25. The length and breadth of a rectangle are in the ratio of 5:3. If the length is 8 m more than the breadth, what is the area of the rectangle?

SSC CHSL 17/03/2020 (Shift-2)
(a) 240
(b) 380
(c) 360
(d) 400
26. Find the circumference of a circle whose diameter is 12 inches.

SSC CHSL 17/03/2020 (Shift-2)
(a) 87.4672 cm
(b) 95.7072 cm
(c) 88.1876 cm
(d) 90.2348 cm
27. A 5 cm long perpendicular is drawn from the centre of a circle to a 24 cm long chord. Find the diameter of the circle.

SSC CHSL 17/03/2020 (Shift-1)
(a) 32 cm
(b) 13 cm
(c) 30 cm
(d) 26 cm
28. The perimeter of a rectangle is 50 cm . Its area and length are in the ratio of $5: 1$. Find the length of the rectangle?

SSC CHSL 17/03/2020 (Shift-1)
(a) 15 cm
(b) 20 cm
(c) 18 cm
(d) 22 cm
29. If M is mid point of a side $B C$ of $\triangle A B C$, and the area of the $\triangle \mathrm{ABM}$ is $18 \mathrm{~cm}^{2}$, then the area of the $\triangle \mathrm{ABC}$

SSC CHSL 17/03/2020 (Shift-1)
(a) 30
(b) 34
(c) 36
(d) 32
30. In a isosceles triangle $A B C, A B=A C$ and $A D$ is perpendicular to $B C$ at D. If $A D=8 \mathrm{~cm}$ and perimeter of $\triangle \mathrm{ABC}$ is 64 cm , then the area of the $\triangle \mathrm{ABC}$.

SSC CHSL 26/10/2020 (Shift-3)
(a) 130
(b) 124
(c) 120
(d) 125

SOLUTIONS

1. (d) Given, side of square $=21 \mathrm{~cm}$

So, radius of circle $=\frac{21}{2} \mathrm{~cm}$
$\operatorname{Area}($ non shaded $)=$ Area of square - Area of circle

$$
\begin{aligned}
& =22 \times 21-\frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \\
& =441-346.5 \\
& =94.50
\end{aligned}
$$

2. (a) ATQ, Side of square $=3$
length of rectangle $=9$
Breadth of rectangle $=3$
Total area of shaded figure $=$ Area of rectangle + Area of square
$=9 \times 3+3^{2} \times 2$
$=\quad 27+18=45$
3 (c) Given side of square $=20 \mathrm{~cm}$
So, radius of circle $=\frac{20}{2}=10 \mathrm{~cm}$
Area $($ shaded region $)=$ Area of square - Area of circle

$$
\begin{aligned}
& =20 \times 20-3.14 \times 10 \times 10 \\
& =400-314=86 \mathrm{~cm}^{2}
\end{aligned}
$$

4 (a)Area of equilateral triangle $=\frac{\sqrt{3}}{4}$ side 2

$$
=\frac{\sqrt{3}}{4} \times 12 \times 12
$$

$$
=36 \sqrt{3} \mathrm{~cm}^{2}
$$

5 (c)According to the question, radius of semicircle $=\frac{5.6}{2}=2.8 \mathrm{~m}$
\therefore Circumference of semicircle $=\pi r+2 r$
$=\frac{22}{7} \times 2.8+2 \times 2.8=8.8+5.6=14.4$
6. (b) Let radius of big circle $=R$
and radius of small circle $=r$
ATQ, $\pi R^{2}-\pi r^{2}=50336$
$\Rightarrow \quad(R-r)(R+r)=16016$
$\Rightarrow \quad R-r=56$
and
$(R+r)=286$
Solve eqn. (I) \& (II)
$R=171 \mathrm{~cm}$ and $r=115 \mathrm{~cm}$
7. (a) According to question
perimeter

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2} \times \frac{100}{100} \times \frac{120}{100} \\
& =0.6 \mathrm{~m}^{2} \\
{[\because h} & =120,50,120,130, \text { triplets }]
\end{aligned}
$$

8. (d) radius of cylinder $=\frac{12}{2}=6 \mathrm{~cm}$
and height $=2.45 \times 6=14.70 \mathrm{~cm}$
\therefore CSA of cylinder $=2 \pi r h=2 \times \frac{22}{7} \times 6 \times 14.7$

$$
=554.4 \mathrm{~cm}^{2}
$$

9. (a) Area of equilateral triangle $=\frac{\sqrt{3}}{4} \times 20 \times 20$

$$
=100 \sqrt{3} \mathrm{~cm}^{2}
$$

10. (c) let height of cylinder $=h$

TSA of cylinder $=2 \pi r(h+r)$
$\Rightarrow \quad 2 \pi \times 3 \times(h+3)=60 \pi$

$$
\begin{aligned}
\Rightarrow & & h+3 & =10 \\
\Rightarrow & & h & =7 \mathrm{~cm}
\end{aligned}
$$

11. (d) Numbers of ball melting $=\frac{15 \times 15 \times 15}{5 \times 5 \times 5}=27$
12. (b) Diameter $=30 \mathrm{~cm}$

$$
\begin{aligned}
\text { radius } & =\frac{30}{2}=15 \mathrm{~cm} \\
\text { Surface area of sphere } & =4 \pi r^{2} \\
& =4 \times 3.14 \times 15 \times 15 \\
& =2820
\end{aligned}
$$

13. (b) Let height of parallelogram $=h$ and base $=2 h$
\therefore Area of parallelogram $=b \times h=144$

$$
\begin{aligned}
& & 2 h^{2} & =144 \\
\Rightarrow & & h^{2} & =72 \\
\Rightarrow & & h & =6 \sqrt{2}
\end{aligned}
$$

14. (d) Let the length of the diagonal be d.

Area $=\frac{1}{2} \times$ diagonal \times [sum of opposite vertices $]$

$$
\begin{aligned}
336 & =\frac{1}{2} \times d \times 28 \\
d & =\frac{336}{14}=24 \mathrm{~cm}
\end{aligned}
$$

15. (a) Volume of cuboid $=7.5 \times 2.2 \times 13$

$$
=2145 \mathrm{~m}^{3}
$$

16. (b)

$$
\begin{aligned}
& \text { Area }=9 \\
& \text { breadth }=1 \\
& \text { So, } \quad \text { Length }=9 \mathrm{~cm} \\
& \text { Perimeter of rectangle }=2(l+b)=86 \\
& \begin{array}{rlrl}
\Rightarrow & & 9+b & =43 \\
\therefore & b & =43-9=34 \mathrm{~cm}
\end{array}
\end{aligned}
$$

17. (c) Side of square $=\sqrt{12} \mathrm{~cm}$

$$
\begin{aligned}
\text { diagonal } & =\sqrt{2} \times \sqrt{12}=\sqrt{24} \mathrm{~cm} \\
\text { radius of circle } & =\text { diagonal of square } \\
& =\sqrt{24} \mathrm{~cm}
\end{aligned}
$$

Area of circle $=\pi r^{2}=\pi(\sqrt{24})^{2}=24 \pi \mathrm{~cm}^{2}$
18. (d) Number of bricks $=\frac{800 \times 300 \times 2250}{64 \times 6 \times 11.25}$

$$
=1,25,000
$$

19. (b) TSA of solid cube, $6 a^{2}=4.86 \mathrm{~m}$

$$
a=0.9 \mathrm{~m} \quad[\because a=\text { side }]
$$

According to the question,
Volume of cylinder $=$ volume of cube

$$
\pi r^{2} h=a^{3}
$$

$$
\begin{aligned}
\frac{22}{7} \times 0.3 \times 0.3 \times h & =0.9 \times 0.9 \times 0.9 \\
h & =2.57 \mathrm{~m}
\end{aligned}
$$

20. (a) Volume of solid cube $=46656$

Number of cubes(smaller) $=27$
\therefore Volume of small cube $=\frac{46656}{27}=1728$
Side of smaller cube $=\sqrt[3]{1728}=12 \mathrm{~cm}$
\therefore Surface area of smaller cube $=6 \times 12 \times 12$

$$
=864 \mathrm{~cm}^{2}
$$

21. (b) Perimeter $=2(l+b)=60$

$$
l+b=30
$$

\therefore Area of triangle $=18 \times 12=216 \mathrm{~cm}^{2}$
22. (c) Remaining area of park $=l b-\pi r^{2}$

$$
\begin{aligned}
& =2400-2 \times \frac{22}{7} \times 7 \times 7 \\
& =2400-308 \\
& =2092 \mathrm{~m}^{2}
\end{aligned}
$$

23. (d)option(d) put the value of 3,8

Area of triangle and perimeter of triangle verified
24. (d) Given, Height of triangle $=12$

Side $=\frac{2}{\sqrt{3}}$, Height $=\frac{2}{\sqrt{3}} \times 12=8 \sqrt{3}$
\therefore Area of equilateral triangle $=\frac{\sqrt{3}}{4} \times 8 \sqrt{3} \times 8 \sqrt{3}$
$=48 \sqrt{3} \mathrm{~cm}^{2}$
$=48 \times 1.732$
$=83.1384 \mathrm{~cm}^{2}$
25. (a)

L B
53
Difference $=2$
2 Unit $=8$
1unit $=4$
$\therefore \quad L=5 \times 4=20$
$\therefore \quad B=3 \times 4=12$
Area $=20 \times 12=240 \mathrm{~m}^{2}$
26. (b) Circumference of circle $=2 \pi r$

$$
=30.48 \times 3.14=95.7072 \mathrm{~cm}\left[\begin{array}{l}
\because 2 r=12 \mathrm{inch} \\
=12 \times 2.54 \\
=30.48 \mathrm{~cm}
\end{array}\right]
$$

27. (d) radius of a circle $=13$
$\because 5,12,13$ is triplets
\therefore Diameter of circle $=2 \times 13=26$

28. (b) Let length of rectangle $=x$

$$
\begin{array}{rlrl}
\text { breadth } & =y \\
& & \\
& \text { Perimeter } & =2(x+y)=50 \\
\Rightarrow & x+y=25 \\
\Rightarrow & y=25-x \\
& & \\
& \text { ATQ, }(x \times y): x & =5: 1 \\
& & \frac{[x \times(25-x)]}{x} & =\frac{5}{1} \\
& & & 25 x-x^{2}=5 x \\
\Rightarrow & & x=20
\end{array}
$$

29. (c) According to question

Given M is the mid point of BC
Area of triangle ABM
$\frac{1}{2} \times \mathrm{AM} \times \mathrm{BM}=18$
$\Rightarrow \quad \mathrm{AM} \times \mathrm{BM}=36$
Area of triangle ABC

$$
\begin{aligned}
& =\frac{1}{2} \times(2 \times \mathrm{AM} \times \mathrm{BM}) \\
& =\frac{1}{2} \times 2 \times 36=36 \mathrm{~cm}^{2}
\end{aligned}
$$

30. (c) Height $=8$

Let, by Triplets $8,15,17$ of $\triangle \mathrm{ADC}$
then base $=2 \times 15=30$
Area of triangle $=\frac{1}{2} \times 30 \times 8=120 \mathrm{~cm}^{2}$

EXERCISE 19C

For SSC CGL \& CPO Exams

1. The circumference of the base of the right circular cylinder is 62.8 cm and its volume is $8792 \mathrm{~cm}^{3}$. What is the curved surface area (in cm^{2}) of the cylinder ? (Take $\pi=3.14) \quad$ SSC CGL 18/4/2022 (Shift-2)
(a) 1695.6
(b) 1758.4
(c) 1632.8
(d) 1570.2
2. A hemispherical depression of diameter 4 cm is cut out from each face of a cubical block of sides 10 cm . Find the surface area of the remaining solid (in cm^{2}). (Use $\pi=22 / 7$)

SSC CGL 18/4/2022 (Shift-1)
(a) $900 \frac{4}{7}$
(b) $112 \frac{4}{7}$
(c) $675 \frac{3}{7}$
(d) $713 \frac{1}{7}$
3. The curved surface area of a right circular cylinder is $616 \mathrm{~cm}^{2}$ and the area of its base is $38.5 \mathrm{~cm}^{2}$. What is the volume (in cm^{3}) of the cylinder? (Use $\pi=22 / 7$)

SSC CGL 13/4/2022 (Shift-3)
(a) 1155
(b) 1408
(c) 1243
(d) 1078
4. Let $x \mathrm{~cm}^{2}$ be the surface area and $y \mathrm{~cm}^{3}$ be the volume of a sphere such that $y=14 x$. What is the radius (in cm) of the sphere ?

SSC CGL 13/4/2022 (Shift-3)
(a) 102
(b) 42
(c) 51
(d) 68
5. The base of a right pyramid is a square of side $8 \sqrt{2}$ cm and each of its slant edge is of length 10 cm . What is the volume (in cm^{3}) of the pyramid ?

SSC CGL Tier-2 (03/02/2022)
(a) 256
(b) 224
(c) $426 \frac{2}{3}$
(d) $96 \sqrt{2}$
6. A cylindrical tube, open at both ends, is made of a metal sheet which is 0.5 cm thick. Its outer radius is 4 cm and length is 2 m . How much metal (in cm^{3}) has been used in marking the tube ?

SSC CGL Tier 2 (03/02/2022)
(a) 800π
(b) 450π
(c) 750π
(d) 550π
7. The volume of a right circular cone is $308 \mathrm{~cm}^{3}$ and the radius of its base is 7 cm . What is the curved surface area (in cm^{2}) of the cone? (Take $\pi=22 / 7$)

SSC CGL Tier-2 (03/02/2022)
(a) $22 \sqrt{21}$
(b) $44 \sqrt{21}$
(c) $22 \sqrt{85}$
(d) $1 \sqrt{85}$
8. Three sides of a triangle are $\sqrt{a^{2}+b^{2}}, \sqrt{(2 a)^{2}+b^{2}}$ and $\sqrt{a^{2}+(2 b)^{2}}$ units. What is the area (in unit squares) of a triangle ?

SSC CGL Tier-2 (03/02/2022)
(a) $\frac{5}{2} a b$
(b) $3 a b$
(c) $4 a b$
(d) $\frac{3}{2} a b$
9. A solid metallic sphere of radius 4 cm is melted and recast into spheres of 2 cm each. What is the ratio of the surface area of the original sphere to the sum of surface areas of the spheres, so formed?

SSC CGL Tier-2 (03/02/2022)
(a) $2: 1$
(b) $2: 3$
(c) $1: 2$
(d) $1: 4$
10. The total surface area of a solid hemisphere is $942 \mathrm{~cm}^{2}$. Its volume (in cm^{3}) is closest to: ? (Take $\pi=3.14$)

SSC CGL (03/02/2022)
(a) 2089
(b) 2093
(c) 2037
(d) 2097
11. The volume of a cylinder is $4312 \mathrm{~cm}^{3}$. Its curved surface area is one-third of its total surface area. Its curved surface area (in cm^{2}) is: ? (Use $\pi=22 / 7$)

SSC CGL Tier-2 (03/02/2022)
(a) 572
(b) 528
(c) 660
(d) 616
12. The radius of a spherical balloon is inflated from 7 cm to 10.5 cm . The percentage increase in its surface area is: ?

SSC CGL Tier-2 (03/02/2022)
(a) 150%
(b) 125%
(c) 120%
(d) 135%
13. A well with inner radius 3 m , is dug 6 m deep. The soil taken out of it has been spread evenly all around it to a width of 2 m to form an embankment. The height (in m) of the embankment is: ?

SSC CGL Tier-2 (03/02/2022)
(a) $4 \frac{1}{2}$
(b) $4 \frac{1}{4}$
(c) $3 \frac{1}{4}$
(d) $3 \frac{3}{8}$
14. The circumference of the base of a cylindrical vessel is 264 cm and its height is 50 cm . The capacity (in litres) of the vessel is:. (Use $\pi=22 / 7$)

SSC CGL Tier-2 (03/02/2022)
(a) 277.2
(b) 278.4
(c) 280.6
(d) 267.4
15. The areas of three adjacent faces of a cuboidal solid block of wax are $216 \mathrm{~cm}^{2}, 96 \mathrm{~cm}^{2}$ and $144 \mathrm{~cm}^{2}$. It is melted and 8 cubes of the same size are formed from it. What is the lateral surface area (in cm^{2}) of 3 such cubes?

SSC CGL Tier-2 (03/02/2022)
(a) 648
(b) 432
(c) 576
(d) 288
16. The base of a right prism is a triangle with sides 16 $\mathrm{cm}, 30 \mathrm{~cm}$ and 34 cm . Its height is 32 cm . The lateral surface area (in cm^{2}) and the volume (in cm^{3}) are, respectively: ? SSC CGL Tier-2 (29/01/2022)
(a) 2560 and 7680
(b) 2688 and 7680
(c) 2624 and 7040
(d) 2560 and 6400
17. The curved surface area and the volume of a cylindrical object are $88 \mathrm{~cm}^{2}$ and $132 \mathrm{~cm}^{3}$, respectively. The height (in cm) of the cylindrical object is: (Use $\pi=22 / 7$) ?

SSC CGL Tier-2 (29/01/2022)
(a) $4 \frac{2}{3}$
(b) 6
(c) 4
(d) $3 \frac{2}{3}$
18. The slant height and radius of a right circular cone are in the ratio $29: 20$. If its volume is $4838.4 \pi \mathrm{~cm}^{3}$, then its radius is: ? \quad SSC CGL Tier-2 (29/01/2022)
(a) 20 cm
(b) 28 cm
(c) 24 cm
(d) 25 cm
19. The volume of a solid hemisphere is $19,404 \mathrm{~cm}^{3}$. Its total surface area (in cm^{2}) is:. (Use $\pi=22 / 7$)

SSC CGL Tier-2 (29/01/2022)
(a) 4158
(b) 3465
(c) 2079
(d) 2772
20. The base of right pyramid is an equilateral triangle, each side of which is 20 cm . Each slant edge is 30 cm . The vertical height (in cm) of the pyramid is :

SSC CGL Tier-2 (29/01/2022)
(a) $5 \sqrt{3}$
(b) $10 \sqrt{\frac{23}{3}}$
(c) $10 \sqrt{3}$
(d) $5 \sqrt{\frac{23}{3}}$
21. The radius of the base of a cylindrical tank is 4 m . If three times the sum of the areas of its two circular faces
is twice the area of its curved surface, then the capacity (in kilolitres) of the tank is: ?

SSC CGL Tier-2 (29/01/2022)
(a) 54π
(b) 108π
(c) 96π
(d) 144π
22. The radius of a solid right circular cone is 36 cm and its height is 105 cm . The total surface area (in cm^{2}) of the cone is:

SSC CGL Tier-2 (29/01/2022)
(a) 4296π
(b) 3969π
(c) 5292π
(d) 3996π
23. A tank is in the form of a cuboid with length 12 m . If 18 kilolitre of water is removed from it, the water level goes down by 30 cm . What is the width (in m) of the tank ?

SSC CGL Tier-2 (13/09/2019)
(a) 4
(b) 5
(c) 5.5
(d) 4.5
24. A 15 m deep well with radius 2.8 m is dug and the earth taken out from it is spread evenly to form a platform of breadth 8 m and height 1.5 m . What will be the length of the platform?

SSC CGL Tier 2 (13/09/2019)
(a) 28.4
(b) 28.8
(c) 30.2
(d) 30.8
25. A right prism has height 18 cm and its base is a triangle with sides $5 \mathrm{~cm}, 8 \mathrm{~cm}$ and 12 cm . What is the lateral surface area (in cm^{2}) ?

SSC CGL Tier 2 (13/09/2019)
(a) 450
(b) 468
(c) 432
(d) 486

SOLUTIONS

1. (d) Circumference of cylinder $=2 \pi r=62.8$

$$
\mathrm{R}=\frac{62.8}{2 \times 3.14}=10 \mathrm{~cm}
$$

Volume of cylinder $=\pi r^{2} h=8792$

$$
h=\frac{8792}{10 \times 10 \times 3.14}=28 \mathrm{~cm}
$$

\therefore CSA of cylinder $=2 \pi \mathrm{rh}$

$$
=2 \times 3.14 \times 10 \times 28=1758.4
$$

2. (c) Diameter of hemispherical $=4 \mathrm{~cm}$

$$
\text { radius }=\frac{4}{2}=2 \mathrm{~cm}
$$

\therefore surface area of remaining solid

$$
\begin{aligned}
& =6 \times \text { side }^{2}+6 \pi \mathrm{R}^{2} \\
& =6 \times 10 \times 10+6 \times \frac{22}{7} \times 2 \times 2 \\
& =600+75 \frac{3}{7}
\end{aligned}
$$

$$
=675 \frac{3}{7} \mathrm{~cm}^{2}
$$

3. (d) CSA of cylinder $=2 \pi r h=616$

Area of base of cylinder $=\pi R^{2}=38.5$
$\Rightarrow \quad \mathrm{R}^{2}=\frac{38.5 \times 7}{22}=\frac{49}{4}$
$\Rightarrow \quad \mathrm{R}=\frac{7}{4}$
$\therefore 2 \pi R h=616$
$\Rightarrow 2 \times \frac{22}{7} \times \frac{7}{2} \times h=616$
$\Rightarrow h=28 \mathrm{~cm}$
\therefore Volume of cylinder $=\pi r^{2} h=38.5 \times 28$

$$
=1078 \mathrm{~cm}^{2}
$$

4. (b) According to question

$$
\begin{aligned}
& \frac{\text { Surface area of sphere }}{\text { Volume of sphere }}=\frac{4 \pi R^{2}}{\frac{4}{3} \pi R^{3}}=\frac{x}{14 x} \\
& \Rightarrow \quad \mathrm{R}=42 \mathrm{~cm}
\end{aligned}
$$

5. (a) Base of triangle $=\frac{1}{2} \times \sqrt{2} \times 8 \sqrt{2}=8 \mathrm{~cm}$

By triplets 6, 8, 10
height $=6$
\therefore Volume of pyramid $=\frac{1}{3} \times(8 \sqrt{2})^{2} \times 6$

$$
=256 \mathrm{~cm}^{3}
$$

6. (c) Given outer radius $=4 \mathrm{~cm}(\mathrm{R})$
and thickness $=0.5 \mathrm{~cm}(\mathrm{r})$
internal radius of tube $=4-0.5=3.5 \mathrm{~cm}$
\therefore Volume of metal used in making tube $=\pi h\left(\mathrm{R}^{2}-r^{2}\right)$
$=\pi \times 2 \times\left(4^{2}-3.5^{2}\right)$
$=\pi \times 200 \times 3.75$
$=750 \pi$
7. (c) Volume of right circular cone $=\frac{1}{3} \pi r^{2} h=308$
$\Rightarrow \frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times \mathrm{h}=308$
$\Rightarrow \quad h=6 \mathrm{~cm}$
Now, slant height $l=\sqrt{r^{2}+h^{2}}$

$$
=\sqrt{49+36}=\sqrt{85}
$$

\therefore Curved surface area $=\pi r l$

$$
\begin{aligned}
& =\frac{22}{7} \times 7 \times \sqrt{85} \\
& =22 \sqrt{85}
\end{aligned}
$$

8. (d) Let $a=1, b=1$

Put the value a and b
$\sqrt{2}, \sqrt{5}, \sqrt{5}$

height of triangle ABC
$=\sqrt{(\sqrt{5})^{2}-\left(\frac{\sqrt{2}}{2}\right)^{2}}$
$=\sqrt{5-\frac{2}{4}}=\frac{3}{\sqrt{2}}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times 2 \times \frac{\sqrt{2}}{2} \times \frac{3}{\sqrt{2}}=\frac{3}{2} a b$
9. (c) Number of spheres $\Rightarrow \frac{4}{3} \pi \times 4 \times 4 \times 4$

$$
=n \times \frac{4}{3} \pi \times 2 \times 2 \times 2
$$

$\Rightarrow n=8$
ratio between area of original sphere and sum of surface area

$$
\begin{aligned}
& =\frac{4 \pi \times 4 \times 4}{4 \pi \times 2 \times 2 \times 8} \\
& =1: 2
\end{aligned}
$$

10. (b) TSA of hemisphere $=942$

$$
\begin{aligned}
& 3 \pi \times r^{2}=942 \\
& \Rightarrow \quad r=10 \mathrm{~cm}
\end{aligned}
$$

Volume of sphere $=\frac{2}{3} \pi r^{3}=\frac{2}{3} \times 3.14 \times 1000$

$$
=2093.33 \mathrm{~cm}^{3}
$$

11. (d) According to question,

$$
\begin{aligned}
& \mathrm{CSA}=\frac{1}{3} \mathrm{TSA} \\
& 2 \pi r h=\frac{2 \pi r(h+r)}{3} \\
& \Rightarrow \quad 3 h=h+r^{3} \\
& \Rightarrow \quad 2 h=r \\
& \Rightarrow \quad h=r / 2
\end{aligned}
$$

Volume of cylinder $=\pi r^{2} h=4312$

$$
\begin{aligned}
\frac{22}{7} \times r^{2} \times \frac{r}{2} & =4312 \\
r & =14 \mathrm{~cm} \\
h & =7 \mathrm{~cm} \\
\mathrm{CSA}=2 \pi r h & =2 \times \frac{22}{7} \times 14 \times 7=616 \mathrm{~cm}^{2}
\end{aligned}
$$

12. (b) Radius $r_{1}=7 \mathrm{~cm}$

Surface area $=4 \pi r_{1}^{2}=4 \pi \times 7 \times 7=196 \pi$
Radius $r_{2}=10.5 \mathrm{~cm}$
Surface area $=4 \pi r^{2}=4 \pi \times 10.5 \times 10.5=441 \pi$
Percentage $($ increase $)=\frac{441 \pi-196 \pi}{196 \pi} \times 100$

$$
=\frac{245}{196} \times 100=125 \%
$$

13. (d) Given:
$h=6 \mathrm{~m}$, inner radius $r=3 \mathrm{~m}$
outer radius $\mathrm{R}=3+2=5$
ATQ,
$\Rightarrow \pi r^{2} h_{1}=\pi\left(\mathrm{R}^{2}-r^{2}\right) h_{2}$
$\Rightarrow 3 \times 3 \times 6=\left(5^{2}-3^{2}\right) h_{2}$
$\Rightarrow 54=16 h_{2}$
$\Rightarrow h_{2}=\frac{27}{8}=3 \frac{3}{8} \mathrm{~m}$
14. (a) Trick Ist option (a) will be divisible by 11
\therefore The correct answer is 277.2
15. (b) Given $l b=216 \mathrm{~cm}^{2}$

$$
\begin{array}{r}
b h=96 \mathrm{~cm} \\
h l=144
\end{array}
$$

So, $(l b h)^{2}=6^{2} \times 4^{2} \times 6^{2} \times 12^{2}$
$l b h=6 \times 4 \times 6 \times 12$
$\therefore 8 a^{3}=6 \times 4 \times 6 \times 12$
$\Rightarrow a^{3}=6^{3}$
$\Rightarrow a=6$
LSA of 3 cubes $=3 \times 4 \times 6 \times 6$

$$
=432 \mathrm{~cm}^{2}
$$

16. (a) $16,30,34$ is a triplet which forms a right angle triangles
\therefore Area of Prism $=\frac{1}{2} \times 16 \times 30=240 \mathrm{~cm}^{2}$
Perimeter of base $=16+30+34=80 \mathrm{~cm}$
\therefore LSA $=$ Perimeter of base \times height

$$
=80 \times 32=2560 \mathrm{~cm}^{2}
$$

\therefore Volume $=$ Area \times height

$$
=240 \times 32=7680 \mathrm{~cm}^{3}
$$

17. (c) ATQ ,
$\frac{\text { CSA of Cylinder }}{\text { Volume of Cylinder }}=\frac{2 \pi r h}{\pi r^{2} h}=\frac{88}{132}$
$r=3$
$\therefore h=\frac{88 \times 7}{2 \times 22 \times 3}=\frac{14}{3}=4 \frac{2}{3} \mathrm{~cm}$
18. (c) Let $l: r: h[\because 20,21,29$ is a triplet $]$ $29 x: 20 x: 21 x$
$\therefore \quad \frac{1}{3} \pi \times 20 x \times 20 x \times 21 x=4838.4 \pi$
$\Rightarrow x=1.2$
\therefore radius $=20 \times 1.2=24 \mathrm{~cm}$
19. (d) Volume of hemisphere $=\frac{2}{3} \times \frac{22}{7} \times r^{3}=19404$

$$
r=21 \mathrm{~cm}
$$

$\therefore \mathrm{TSA}=3 \pi r^{2}=3 \times \frac{22}{7} \times 21 \times 21=2772$
20. (b)

20

Centre of equilateral triangle $=\frac{a}{\sqrt{3}}=\frac{20}{\sqrt{3}}$
Let vertical height be x
By Pythagoras theorem

$$
x^{2}=\frac{2700-400}{3}=10 \sqrt{\frac{23}{3}} \mathrm{~cm}
$$

21. (c) ATQ,

Sum of areas of two circular faces

$$
\pi r^{2}+\pi r^{2}=2 \pi r^{2}
$$

CSA of cylinder $=2 \pi r h$
$3 \times 2 \pi r^{2}=2 \times 2 \pi r h$
$h=\frac{3}{2} r=\frac{3}{2} \times 4=6 \mathrm{~m}$
Volume of tank $=\pi r^{2} h$

$$
\begin{array}{r}
=\pi \times 4 \times 4 \times 6 \\
=96 \pi \mathrm{kl}
\end{array}
$$

22. (c) Given radius $=36 \mathrm{~cm}$
height $=105 \mathrm{~cm}$
slant height $=111 \mathrm{~cm}$
By triplets 36, 105, 111
$\mathrm{TSA}=\pi r(l+r)$
$=\pi \times 36(111+36)$
$=5292 \pi$
23. (b) According to question,

Volume of cuboid $=L \times B \times h$
$\Rightarrow 1 \mathrm{M}^{3}=1000 \mathrm{~L}$
$\Rightarrow 18000 \mathrm{~L}=18 \mathrm{~m}^{3}$
$\Rightarrow 12 \times 30 \times B=18 \times 100$
$\therefore \quad B=5 \mathrm{~m}$
24. (d) Given, Height platform (h) $=1.5 \mathrm{~m}$

Height of well $(\mathrm{H})=15 \mathrm{~m}$
Breadth of platform $=8 \mathrm{~m}$
$r=2.8$
ATQ,

$$
\pi r^{2} \mathrm{H}=l \times b \times h
$$

$$
\frac{22}{7} \times 2.8 \times 2.8 \times 15=1.5 \times 8 \times l
$$

$$
\therefore \quad l=30.8 \mathrm{~m}
$$

25. (b) $\mathrm{LSA}=2(5+8) \times 18$
$=26 \times 18=468 \mathrm{~cm}^{2}$
